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Very little is known about how auditory categories are learned incidentally, without instructions to search
for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is
an important gap because learning in the natural environment does not arise from explicit feedback and
there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited
by incidental category learning. We examined incidental auditory category learning with a novel
paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants
rapidly detect and report the appearance of a visual target in 1 of 4 possible screen locations. Although
the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These
sounds are drawn from 1 of 4 distinct sound categories that predict the location of the upcoming visual
target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category
learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this
learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability
is more tightly coupled to the visuomotor associations than when the same stimulus variability is
experienced across trials. We relate these findings to phonetic category learning.
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When we recognize red wines as Barbera, mushrooms as edible,
and children’s cries as joyful, we rely on categorization. Our
ability to treat distinct perceptual experiences as functionally
equivalent is vital for perception, action, language, and thought.
There is a rich literature on category learning (Ashby & Maddox,
2005; Cohen & Lefebvre, 2005; Seger & Miller, 2010), with the
vast majority of research conducted using visual objects and train-
ing paradigms that capitalize on overt category decisions and
explicit feedback. Although we have learned much from this
traditional approach, the results of such overt category training
tasks with visual objects may not generalize to category learning in
all modalities or all natural environments.

Speech highlights this issue. The acoustic complexity of speech
presents an auditory category-learning challenge for learners.

Complex multidimensional acoustic attributes define speech cate-
gories; as many as 16 different acoustic dimensions covary with
the consonants /b/ and /p/, for example (Lisker, 1986). Further, the
significance of various acoustic dimensions is language-community
dependent. For instance, among American English listeners, spectral
quality is a strong cue to vowel categories, as in heel versus hill
(Hillenbrand, Getty, Clark, & Wheeler, 1995). By contrast, British
English listeners from the South of England rely much more on vowel
duration than spectral quality to distinguish these categories (Escu-
dero, 2001). Further complicating the demands on the listener, there is
also concurrent acoustical variability unrelated to consonant or vowel
category identity, which is associated instead with the talker’s voice,
emotion, and even with room acoustics. The mapping from acoustics
to phonemes can be understood as a process of auditory perceptual
categorization (see Holt & Lotto, 2010), whereby listeners must learn
to discriminate and perceptually weight linguistically significant
acoustic dimensions and to generalize across within-category acoustic
variability in speech.

Although perceptual categorization has long been studied in the
cognitive sciences (for a review see Cohen & Lefebvre, 2005), the
challenges presented by speech signals are somewhat different
from those that have motivated most research on categorization.
Speech category exemplars are inherently temporal in nature, with
the information signaling categories spread across time. Moreover,
unlike typical “stimulus-response-feedback” laboratory tasks,
speech category acquisition “in the wild” occurs under more inciden-
tal conditions, without instructions to search for category-diagnostic
dimensions, overt category decisions, or experimenter-provided feed-
back.
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Beyond ecological validity, this is an important issue because
there is growing evidence that overt and incidental learning para-
digms draw upon neural substrates with distinctive computational
specialties (e.g., Doya, 1999; Lim, Fiez, Wheeler, & Holt, 2013;
Tricomi, Delgado, McCandliss, McClelland, & Fiez, 2006). In-
deed, research across multiple fields has shown that stimulus
structure (Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005;
Maddox, Ing, & Lauritzen, 2006), feedback (Maddox & Ing,
2005), and task timing (Ashby, Maddox, & Bohil, 2002; Maddox,
Ashby, Ing, & Pickering, 2004) can have a considerable influence
on the category learning mechanisms that are recruited (in the
auditory domain see Chandrasekaran, Yi, & Maddox, 2014). To
fully understand the general principles underlying category learn-
ing, it is vital to understand incidental category acquisition.

In the auditory domain, there has been some recent progress in
developing approaches to studying incidental learning (Seitz et al.,
2010; Vlahou, Protopapas, & Seitz, 2012; Wade & Holt, 2005).
Seitz et al. (2010) report that participants’ discrimination of sub-
threshold nonspeech sounds improves under task-irrelevant per-
ceptual learning paradigms (Seitz & Watanabe, 2009) whereby
subthreshold sounds are presented in a manner that is temporally
correlated with other, suprathreshold task-relevant sound stimuli.
Even though participants do not attend to the subthreshold sounds,
these sounds’ alignment with task-relevant goals leads participants
to learn about them. Quite surprisingly, the magnitude of this
incidental learning is comparable to that achieved through explicit
training with direct attention to the sounds, overt decisions, and
trial-by-trial performance feedback.

Vlahou et al. (2012) have extended this auditory task-irrelevant
perceptual learning approach (Seitz & Watanabe, 2009) to a dif-
ficult nonnative speech contrast. These studies are innovative in
that they examine incidental auditory perceptual learning. How-
ever, they do not specifically address auditory category learning.
Instead, in their approach, learning is measured through improved
discriminability thresholds for trained sounds, which may lay a
sensory foundation from which to build new auditory categories.
However, the relationship of learning in this paradigm to category
acquisition remains to be determined. Highlighting the difference,
task-irrelevant perceptual learning tends to be limited to stimuli
experienced in training, whereas generalization to novel exemplars
is a hallmark of categorization.

Wade and Holt (2005) provide more direct evidence that im-
plicit task relevance can result in auditory category learning. In
their task, participants’ objective is to earn points by executing
actions to shoot and capture aliens that emerge at specific locations
within a space-themed videogame. The task is largely visuomotor,
but it is structured such that sound can support success in the game.
Most significantly, each alien is associated with multiple, acous-
tically variable sounds drawn from an artificial nonspeech auditory
category. Upon each appearance of an alien, sounds from its
corresponding auditory category are played repeatedly. As the
game progresses to more challenging levels the pace becomes
faster and generalizing across the acoustic variability that charac-
terizes within-category sound exemplars facilitates game perfor-
mance. Players can hear an approaching alien before seeing it
appear. Thus, if players have learned the sound categories’ rela-
tionship with the aliens, they can get a head start (no capitalization)
on executing the appropriate action. Players may capitalize on the
predictive relationship between sound category and game action

although they receive no explicit instruction about the relation-
ship’s existence or utility. Wade and Holt argue that this predictive
relationship encourages participants to learn to treat acoustically
variable within-category sounds as functionally equivalent, that is,
to categorize the sounds. However, the learning is incidental, in
that it involves no instructions to search for category-diagnostic
dimensions, no overt category decisions, and no explicit
categorization-performance feedback. Learners’ goals and attention
are not directed to sound categorization. However, participants
quickly learn the sound categories and generalize to novel exemplars
(Leech, Holt, Devlin, & Dick, 2009; Lim et al., 2013; Lim & Holt,
2011; Liu & Holt, 2011; Wade & Holt, 2005).

Successful auditory category learning within this videogame
engages putatively speech-selective left posterior superior tempo-
ral cortex for processing the newly acquired nonspeech categories
(Leech et al., 2009; Lim et al., 2013) and warps perceptual space
in a manner like that observed in speech category acquisition (Liu
& Holt, 2011). The learning evoked in this incidental training task
is also effective in speech category learning. Adult native-Japanese
second-language learners of English significantly improve in cat-
egorizing English /r/-/l/ (a notoriously difficult second-language
phonetic learning challenge; Bradlow, Pisoni, Akahane-Yamada,
& Tohkura, 1997; Ingvalson, Holt, & McClelland, 2012; Ingval-
son, McClelland, & Holt, 2011; Lively, Pisoni, Yamada, Tohkura,
& Yamada, 1994) with just 2.5 hr of incidental training within the
videogame (Lim & Holt, 2011).

Studies like these move us closer to understanding the nature of
learning under naturalistic task demands, in that they do not
involve overt instructions to search for category structure, explicit
categorization decisions, or trial-by-trial experimenter-provided
feedback. However, many important questions remain regarding
the character of incidental auditory category learning and the
processes underlying it.

In the present research, we focus on two of these issues. The
first is related to the incidental task demands that are theorized to
promote learning in the Wade and Holt (2005) videogame. By
design, the videogame models a complex array of factors to
simulate the functional use of sound categories in a naturalistic
environment. Participants actively navigate the videogame envi-
ronment and encounter rich multimodal associations and predic-
tive relationships between sound categories and game events. They
also experience distributional variability in category exemplars,
and a strong relationship between sound category learning and
videogame success. Any of these factors might contribute to cat-
egory learning.

Wade and Holt (2005, see also Lim et al., 2013; Lim & Holt,
2011) argue that the consistent temporal correlation of the visual
(alien) and motor (response to the alien) dimensions with the
auditory categories may serve as the “representational glue” that
binds together acoustically distinct category exemplars in the
incidental training. This is an interesting possibility because it
treats co-occurring stimulus and response dimensions as teaching
signals for learning. However, the richness of the cues available in
the videogame makes it impossible to test this hypothesis directly
within the videogame paradigm. In the present studies, we develop
and use a simplified incidental training task—the Systematic Mul-
timodal Associations Reaction Time (SMART) task—to assess the
influence of visuomotor associations in binding acoustically vari-
able exemplars together in incidental category learning. We hy-
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pothesize that these associations support incidental auditory cate-
gory learning.

The second issue concerns variability. Research in speech category
learning has emphasized the importance of experiencing high
acoustic-phonetic variability in training. Experience with multiple
speakers, phonetic contexts, and exemplars seems to promote nonna-
tive speech category learning and generalization among adult learners
(Bradlow et al., 1997; Iverson, Hazan, & Bannister, 2005; Jamieson &
Morosan, 1989; Wang, Spence, Jongman, & Sereno, 1999). This
notion has been highly influential in empirical and theoretical ap-
proaches to speech category learning. However, it has arisen from
studies of extensive training across multiple training sessions span-
ning days or weeks that have examined learning via explicit,
feedback-driven tasks in which listeners actively search for category-
diagnostic information. How variability impacts incidental auditory
learning remains an open question.

In the present studies, we address the issue of variability in
incidental auditory category learning in a way that differs from
prior research. Thus far, studies examining the impact of variabil-
ity have typically compared category learning across stimulus sets
characterized by high versus low acoustic variability. In the pres-
ent studies, we hold acoustic variability constant across experi-
ments and manipulate the relationship of within-category exemplar
variability to the visuomotor associations that we predict will serve
as “glue” that binds exemplars into categories. We predict more
robust auditory category learning under conditions whereby
within-category acoustic variability is experienced in association
with the visuomotor dimensions compared with the same variabil-
ity experienced across trials.

Across five experiments, we investigate incidental auditory cat-
egory learning for the same artificial, nonlinguistic auditory cate-
gories studied by Wade and Holt (2005). Experiment 1 tests the
main hypothesis that auditory categories can be learned inciden-
tally as participants engage in a seemingly unrelated visual detec-
tion task. Experiments 2a and 2b examine whether the learning
observed in Experiment 1 depends upon the visuomotor associa-
tions we hypothesize to be significant in driving learning. Exper-
iment 3 tests the influence of exemplar variability on incidental
learning and Experiment 4 doubles the length of incidental training
to compare it to the outcome to the impact of variability on
learning.

The SMART Task

The present experiments examine these questions in the context
of a novel incidental training task—the Systematic Multimodal
Associations Reaction Time (SMART) task. This task builds from
the visuomotor associations we hypothesize to be significant in
driving learning in the Wade and Holt (2005) videogame task, but
strips away the complexity of the videogame. Thus, it allows direct
assessment of the influence of visuomotor associations in binding
acoustically variable exemplars together in incidental category
learning.

In the SMART task, participants must rapidly detect the appear-
ance of a visual target in one of four possible screen locations and
report its position by pressing a key corresponding to the visual
location. The primary task is visual detection. However, a brief
sequence of sounds precedes each visual target. Unknown to
participants, the sounds are drawn from one of four distinct sound

categories. This basic version of the paradigm mimics some of the
aspects of incidental training paradigms thought to be important in
learning (Lim & Holt, 2011). There is a multimodal (auditory
category to visual location) correspondence that relates variable
sound category exemplars to a consistent visual object, as in the
Wade and Holt (2005) videogame. This mapping is many-to-one,
such that multiple, acoustically variable sound category exemplars
are associated with a single visual location (akin to the single alien
in the videogame). Likewise, sound categories are predictive of the
action required to complete the task; in the case of the SMART
task, they perfectly predict the location of the upcoming visual
detection target and corresponding response button to be pressed.
As with the Wade and Holt (2005) task, the SMART task makes
it possible to investigate whether participants incidentally learn
auditory categories during a largely visuomotor task. However, the
SMART task characteristics are straightforward by comparison
with the Wade and Holt (2005) first-person interactive videogame,
thereby allowing task manipulations to test the factors necessary
and sufficient to produce robust incidental auditory category learn-
ing and generalization.

We assess category learning with two measures. The first is
more covert and implicit, using changes in visual target detection
time as a metric. In the first three blocks of the experiment, there
is a perfect correlation between the sound categories and the
location of the upcoming visual target. In the terms used above, the
visuomotor demands of the task provide a strong signal to bind
within-sound-category variability. In a fourth test block, scram-
bling the mapping between location and sound category destroys
this relationship. If participants incidentally learn about the sound
categories in the first three blocks then we expect visual detection
times to be slower in the random (fourth) test block relative to the
(third) block that preceded it. We refer to this implicit measure of
auditory category learning as the reaction time (RT) Cost. It can be
observed without overt auditory categorization decisions or re-
sponses. Participants are not alerted to the relationship of the sound
to the task and the acoustic variability among within-category
sound exemplars assures that there is no simple sound-location
association.

We also measure category acquisition via an overt sound cate-
gorization task that follows the SMART task. In this task, partic-
ipants hear novel sound exemplars drawn from the sound catego-
ries experienced during the SMART task and guess the location
where the visual target would be most likely to appear. However,
no visual targets appear in this task and there is no feedback about
the correctness of responses. Thus, this is a strong assessment of
generalization of incidental category learning to novel, category-
consistent stimuli. It also requires that participants apply the newly
learned auditory categories in an explicit task that differs from the
learning context. This task presents the opportunity to examine
correlations of overt category labeling to the more implicit RT
Cost measure collected in the SMART task.

Experiment 1

In Experiment 1 and the experiments that follow, we adopt the
same artificial nonspeech auditory categories studied by Wade and
Holt (2005; see also Emberson, Liu, & Zevin, 2013; Leech et al.,
2009; Lim et al., 2013; Liu & Holt, 2011). The purpose of
Experiment 1 is to test whether a predictive relationship between
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sound categories and the visuomotor aspects of the task (location,
response) is sufficient to result in learning the complex auditory
categories, and to generalize learning to novel exemplars. Our
overarching goal for the entire set of experiments is to understand
the factors that drive incidental auditory category learning.

Method

Participants. In this and all experiments, participants were
recruited from the Carnegie Mellon University community. They
received payment or course credit, had normal or corrected-to-
normal vision, and reported normal hearing. Twenty-five partici-
pants were tested in Experiment 1.

Stimuli. The artificial, complex nonspeech sound categories
of Wade and Holt (2005; see also Emberson et al., 2013; Leech et
al., 2009; Liu & Holt, 2011) were used in Experiment 1, and all
experiments that follow. Each auditory category experienced in the
SMART task was composed of six sound exemplars. Two of the
categories were “unidimensional,” and were differentiated by a
single, perceptually salient acoustic dimension. The other two
categories were “multidimensional” and were defined such that no
single acoustic dimension determined category membership (see
Figure 1 for schematized versions of the six exemplars for each
category). Across categories, each sound exemplar was 250 ms in
duration and was created by combining a sound made of a lower-
frequency spectral peak with another sound made of a higher-
frequency spectral peak. Sounds drawn from the unidimensional
categories shared the same lower-frequency spectral peak, namely
a 100 ms-long 600 Hz square wave carrier that linearly transi-
tioned to a 300-Hz offset frequency across the last 150 ms of the
stimulus. Similarly, sounds from each multidimensional category
had identical lower-frequency spectral peak characteristics; for
these sounds, the 143-Hz square wave carrier transitioned linearly
from a 300-Hz starting frequency across 150 ms to 600 Hz, where
it was steady-state for the remaining 100 ms of the stimulus.

Uni- and multidimensional exemplars were differentiated by the
dynamics of the higher spectral peak. The unidimensional category
sounds’ high spectral peak started and remained at a given steady-
state frequency for 100 ms, and then transitioned to an offset
frequency across 150 ms. By contrast, the multidimensional ex-
emplars’ higher peak immediately transitioned across 150 ms from
an onset frequency, and then remained at a given steady-state
frequency for the following 100 ms. For multidimensional cate-
gories, the high spectral peak was derived from a sawtooth wave
of periodicity 150 Hz; for unidimensional stimuli, it was derived
from bandpass-filtered uniform random noise.1 Across all catego-
ries, the steady-state portion of the high-frequency peak varied
across exemplars in center frequency from 950 to 2,950 Hz in
400-Hz steps, thereby carrying no first-order information to cate-
gory membership.

The linear transitions from the high peak steady-state frequen-
cies were determined by the steady-state frequency and a category-
specific offset frequency to which the high peak transitioned.
However, to prevent listeners from using the onset/offset fre-
quency alone to determine category membership, the high peak
transitioned only about 83% of the distance to the (canonical)
onset/offset frequency. As a result, the high peak onset/offset
frequencies varied somewhat across exemplars within a category.

The unidimensional category offset frequencies were chosen
such that the categories (UD1/UD2) were defined by an upward or
downward high-peak frequency trajectory, as shown in Figure 1.
Because the offset loci were substantially higher (UD1, 3,950 Hz)
or lower (UD2, 350 Hz) than the steady-state frequencies (varying
between 1,000 Hz to 3,000 Hz, depending on exemplar), each
exemplar within a category possessed a falling or rising high-peak
offset transition, with somewhat different slopes and offset-
frequencies. This created a perceptually salient cue to category
membership that listeners are able to use fairly well to group
stimuli (Emberson et al., 2013; Wade & Holt, 2005).

Unlike the higher spectral peak transitions present in the unidi-
mensional categories, the onset frequencies for the high peak in the
multidimensional categories (MD1/MD2) were chosen so that the
direction of the high peak transition provided no first-order acous-
tic information with which to differentiate the two categories.
Here, onset frequencies (2,550 Hz for MD1, 1,350 Hz for MD2)
fell within the range (1,000 Hz to 3,000 Hz) of potential steady-
state frequencies, which were identical over both multidimensional
categories. Hence, high spectral peak onset transitions in both
MD1 and MD2 varied from steeply increasing in frequency, to flat
to slightly decreasing in frequency (see Figure 1). The multidi-
mensional categories lacked consistent necessary and sufficient
single cues to category membership, a characteristic intended to
model the sound categorization challenge presented by the noto-
riously noninvariant nature of acoustic dimensions to phonetic
categories. Nonetheless, consistent with the characteristics of
many phonetic categories (Lindblom, 1996; Lindblom, Brownlee,
Davis, & Moon, 1992), the multidimensional categories are lin-
early separable in higher-dimensional acoustic space. Although
there is no first-order acoustic cue with which to differentiate these
categories, transition slope and steady-state frequency information
provide reliable higher-order information.

In addition to the six exemplars defining each of the categories
during training, five additional exemplars per category were cre-
ated and reserved for testing generalization of category learning to
novel exemplars. These stimuli had steady-state frequencies inter-
mediate to those of the training stimuli (900 Hz to 2,500 Hz, in
400-Hz steps). In other respects their acoustic characteristics matched
those of their category, as described above.

Procedure. All testing took place in a sound-attenuated cham-
ber with participants seated directly in front of a computer monitor.
Sounds were presented diotically over headphones (Beyer, DT-
150).

SMART visual detection task. Participants first performed a
visual detection task in the SMART paradigm (see Figure 2). Four
rectangles organized horizontally across the computer monitor
were present throughout the experiment. On each trial, a red X (the
visual target) appeared in one of four rectangles. Across trials,
assignment of the X to one of the four rectangles was random;
unlike traditional serial RT tasks (a well-studied implicit learning

1 White noise sound sources were generated at 22,050 Hz and filtered
with an eighth-order elliptical bandpass filter with 2-dB peak-to-peak
ripple, 50-dB minimum attenuation, and 500-Hz bandwidth using Matlab
(Mathworks, Inc., Natick, MA). After filtering, all spectral peaks (square/
sawtooth wave and filtered white noise) were equalized for RMS amplitude
within and across categories, and 25-ms linear onset and offset amplitude
ramps were applied.
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paradigm; Nissen & Bullemer, 1987), there was no underlying
sequence in the appearance of X’s across trials. Using the fingers
of the dominant hand, participants indicated the position of the X
as quickly and accurately as possible by pressing the U, I, O, or P
key on a standard keyboard; the keys’ left-to-right position

mapped straightforwardly to the horizontal screen position of the
rectangles. Before the appearance of the visual target, participants
heard five repetitions of a single sound category exemplar (250 ms
sounds, 0 ms ISI, 1,250 ms total duration followed immediately by
the visual target).

Figure 1. Schematic spectrograms show the artificial nonspeech auditory category exemplars across time and
frequency, for each uni-dimensional (UD1/UD2) and multidimensional (MD1/MD2) category. The dashed gray
lines show the lower-frequency spectral peak that is common to all exemplars of a given category. Each colored
line shows the higher-frequency spectral peak corresponding to a single category exemplar. See text for further
details. See the online article for the color version of this figure.

Figure 2. Overview of the Systematic Multimodal Associations Reaction Time (SMART) task. (A) There is
a consistent mapping between auditory categories and screen locations, with acoustically variable sound
exemplars associated with the category-consistent visual location. (B) The order of events in an example trial of
the task. A sound category is randomly selected and an exemplar from it is chosen and presented. This is
followed by the appearance of a red “X” in the corresponding screen location. Participants then respond by
pressing the key corresponding to the position of the “X.” See the online article for the color version of this
figure.
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Unbeknownst to participants, the sound category from which
each exemplar was drawn perfectly predicted of the horizontal
position where the visual target would appear (see Figure 2).
For a given subject, presentation of five repetitions of a ran-
domly selected UD1 exemplar might always precede the ap-
pearance of the X in the left-most rectangle and thereby be
associated with pressing U on the keyboard. (Note that assign-
ment of sound categories to horizontal position was counter-
balanced across participants.) More important, this was not a
simple associative single-sound-to-position mapping. Each
sound category was defined by six complex, acoustically vari-
able exemplars. Associating the visual target position with the
preceding sounds required participants to begin to treat the
perceptually discriminable sounds defining a category as func-
tionally equivalent in signaling visuospatial position. Note that
the task did not require that participants make use of this
functional relationship between sound category and visual tar-
get location; the task could be completed perfectly based on
visual information alone. However, because the sound category
predicts the upcoming spatial position of the visual target,
visual detection RT can serve as an indirect measure of sound
category learning. If participants come to rely on the sound
categories to direct responses to the visual targets, then detec-
tion responses should be slower (RT Cost) when the relation-
ship is destroyed.

At the beginning of the experiment, participants completed eight
practice trials for which there was no correlation between sound
category and the position of the visual target. (Practice trials were
identical to experimental trials in all other respects.) After practice,
there were three blocks of trials for which there was a perfect
correlation between sound category and visual target location.
Each of these blocks had 96 trials (4 sound categories ! 6
exemplars ! 4 repetitions of each exemplar). After these three
blocks, there was a fourth block in which sound category identity
was no longer predictive of the position in which the visual target
would appear. In this block, assignment of sound to visual position
was fully random; any sound exemplar could precede presentation
of the visual target in any position. Block 4 was somewhat shorter
than the other blocks (48 trials) so that experience with the random
mapping would be less likely to erode any category learning
achieved across Blocks 1–3. The final, fifth, block restored the
relationship between sound category and the location of the up-
coming visual target. This served to reestablish category learning
before the overt categorization task. Participants were encouraged
to rest briefly between blocks. Reaction times (RTs) were mea-
sured from the onset of the visual detection target to the press of
the response key.

Overt categorization task. A “surprise” explicit sound cate-
gorization test immediately followed the SMART visual detec-
tion task. On each trial, participants heard a sound exemplar
presented five times and observed four rectangles arranged
horizontally, just as in the SMART task. Using the dominant
hand and same keys (U, I, O, and P) as used in the SMART
task, participants guessed which visual location matched the
sound. No visual targets were presented in the overt task and
there was no feedback. Therefore, participants could not learn
about auditory category in the course of the overt task. Sound-
category exemplars in the test were the five novel sounds
created for each sound category. These sounds were not expe-

rienced in the SMART task and thus tested generalization of
category learning to novel exemplars, a characteristic element
of categorization.

Results

Results for all experiments are shown in Figures 3 and 4;
Experiment 1 results are in the top left-hand corner of Figure 3 and
the left-most bar of Figure 4.

SMART visual detection task. Trials for which there was a
visual detection error (M " 3%) or RT longer than 1,500 ms or
shorter than 100 ms (M " 2%) were excluded from analyses. A
repeated measures analysis of variance (ANOVA) revealed a sig-
nificant main effect of block, F(4, 96) " 4.25, p " .003, #p

2 " .150.
Central to the hypotheses, there was a significant RT Cost, where
RT Cost " RTBlock4 – RTBlock3, t(24) " 3.69, p " .001. As seen
in Figure 3, participants were on average 38 ms faster to detect the
visual target in Block 3 (consistent sound category to location
mapping) compared with Block 4, when the sound category/
location relationship was destroyed. This indicates that participants
were sensitive to the relationship between sound category and
visual target and suggests that RT Cost can serve as an index of
category learning collected online during the incidental SMART
training task. A repeated measures ANOVA revealed no signifi-
cant differences in RT Cost for the two types of categories, F $ 1.

Overt categorization task. As an overt measure of category
learning, we used participants’ accuracy in explicitly matching
novel sound category exemplars with visual locations consistent
with the category-location relationship encountered in the SMART
task. The sounds tested in the overt categorization task were not
heard during the visual detection task and thus generalization—a
hallmark of category learning—was required for accurate match-
ing. Participants reliably matched the novel sounds to the experi-
enced visual locations at above-chance levels, t(24) " 6.36, p $
.0001 (M " 49.73, SE " 3.89). This was true for both unidimen-
sional, t(24) " 5.77, p $ .0001, (M " 52.62, SE " 4.79), and
multidimensional, t(24) " 5.80, p $ .0001, (M " 46.84, SE "
3.76), sound categories.

Relationship between implicit and overt measures. There
was a significant positive relationship between RT Cost and cat-
egory labeling accuracy in the overt categorization task, r " .596,
p " .001. The slower that visual detection RTs were during the
random sound-to-location mapping in Block 4 (relative to the
average in Block 3), the more accurate labeling was of novel
generalization category exemplars. This is evidence that the online
measure of category learning collected during incidental learning
in the SMART task relates to generalization of category learning
assessed with a more traditional overt labeling task.

Experiments 2a and 2b

The results of Experiment 1 are consistent with incidental au-
ditory category learning via the link to the visuomotor aspects of
the primary visual detection task. However, it is possible that the
learning arose instead from mere exposure to the sound input.
Another alternative hypothesis is that participants in Experiment 1
did not learn auditory categories per se, but instead learned sound-
location associations between individual sound exemplars and
their associated visual positions. We address these possibilities in
Experiments 2a and 2b.
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In Experiment 2a, we test whether incidental category learning
generalizes to novel category exemplars within the SMART task.
If participants learn sound-location associations, and not auditory

categories, then introducing new category exemplars should pro-
duce a RT Cost because no sound-location associations will be
known for these stimuli. However, if participants are learning
auditory categories, then they may generalize to these new
category-consistent exemplars. In this case, we would observe no
RT Cost.

In Experiment 2b, we address the concerns above in a different
way. Across blocks, participants experience a deterministic map-
ping between visual location and sound, but the exemplars mapped
to a particular visual location are not necessarily drawn from the
same sound category. Thus, overall category exemplar exposure is
identical to Experiment 1, but within-category distributional
acoustic regularity is not associated with the visuomotor mappings
inherent in the SMART task. If listeners are learning from mere
exposure then we should observe overt category labeling accuracy
on par with that in Experiment 1.

Method

Participants. Twenty-six participants participated in Experi-
ment 2a. Twenty-five participated in Experiment 2b. Participants
had the same characteristics as those of Experiment 1.

Stimuli. Stimuli were identical to those of Experiment 1.
Procedure. The procedure was identical to Experiment 1,

except as described below.

Figure 3. Reaction time (RT) to detect the visual target as a function of block, presented across experiments.
The RT Cost is the difference in average RT across Blocks 3 and 4 (and 8 and 9 in Experiment 4), summarized
in the bottom panel. See the online article for the color version of this figure.

Figure 4. Average accuracy in the posttraining overt categorization task
across experiments. Note that there was no overt categorization task
conducted in Experiment 2a. All sounds categorized in the overt catego-
rization task were novel category exemplars not experienced in training.
The dashed line represents chance-level performance. See the online article
for the color version of this figure.
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Experiment 2a. Blocks 1–3 and Block 5 of the SMART task
were identical to those of Experiment 1. However, in Block 4
novel, but category-consistent, sounds were presented. This main-
tained the category-to-location mapping with category exemplars
that had not been previously encountered. The generalization stim-
uli used in the overt categorization test of Experiment 1 served as
the novel generalization sounds in Block 4. To the extent that
participants learn the auditory categories across Blocks 1–3 and
generalize this learning in Block 4, there should be no RT Cost
from Block 3 to Block 4. Experiment 2a did not include an overt
categorization test because the generalization stimuli used as a test
of category generalization in the overt labeling task of Experiment
1 were used instead in Block 4 of the SMART task.

Experiment 2b. In this experiment, six sound exemplars were
again deterministically mapped to each visual target location, but
unlike Experiment 1 and Experiment 2a, the set of exemplars
associated with each location did not come from a single sound
category. The exemplar-to-location mapping was maintained
across Blocks 1–3, and in Block 5. In Block 4, a new mapping of
exemplars to location was introduced. This mapping also did not
obey the category structure of the stimuli; sounds from any cate-
gory could be assigned to any location, so long as it was not the
same location experienced across Blocks 1–3 and 5. If listeners
learned specific sound-location associations, then disrupting the
exemplar-consistent (but not category-specific) associations estab-
lished in Blocks 1–3 with a new sound-to-location randomization
in Block 4 should produce a RT Cost. However, we expect no RT
Cost if the learning observed in Experiment 1 was not a simple
sound-location association. Such a finding also would rule out
exemplar memorization and mere exposure as the drivers of the
Experiment 1 findings. Experiment 2b included an overt catego-
rization test identical to that of Experiment 1.

Results

Experiment 2a.
SMART visual detection task (see Figure 3, top middle panel).

Trials for which there was a visual detection error (M " 3%) or RT
longer than 1,500 ms or shorter than 100 ms (M " 3%) were
excluded from analyses. A repeated measures ANOVA revealed
no significant main effect of block, F(4, 100) $ 1. A planned t test
showed that introducing novel generalization stimuli in Block 4
was not associated with a significant RT Cost (RTBlock4 –
RTBlock3), t(25) " .45, p " .66 (M " 2 ms). In other words,
although completely new sounds were introduced in Block 4,
participants responded just as quickly to the visual target. Thus,
any learning that occurred over Blocks 1–3 generalized to novel
category exemplars in Block 4. This pattern of generalization is
consistent with category learning in Experiment 1, rather than
learning item-specific sound-location associations.

Experiment 2b.
SMART visual detection task (see Figure 3, top right panel).

Trials for which there was a visual detection error (M " 3%) or RT
longer than 1,500 ms or shorter than 100 ms (M " 1%) were
excluded from analyses. A repeated measures ANOVA revealed
no significant main effect of block, F(4, 96) " 1.54, p " .19.
There was no significant RT Cost, t(24) " %0.70, p " .49. Thus,
although there was a consistent sound exemplar to visual location
mapping in Blocks 1–3, disruption of this mapping did not affect

the speed at which participants detected the visual targets. This is
in contrast to the consequences of disrupting the sound category to
visual location mapping in Experiment 1. These results suggest
that the pattern of responses observed in Experiment 1 was not the
result of mere exposure to the sound exemplars, memorization of
individual sound-location mappings, or simple sound-location as-
sociations.

Overt categorization task (see Figure 4, middle bar).
Consistent with the lack of an RT Cost in the incidental SMART
task, participants’ accuracy in overtly matching novel sound cat-
egory exemplars and visual locations was not significantly differ-
ent from chance for either uni-dimensional, t(24) " .42, p " .68 or
multidimensional, t(24) " %0.52, p " .61 categories. Categories
composed of arbitrary samplings of exemplars with no coherent
distributional structure in perceptual space were not learned, sug-
gesting that structured distributions are an important factor in
incidental category learning. We return to this point in the General
Discussion.

Relationship between implicit and overt measures. There was
no correlation between RT Cost (Block4RT – Block3RT) and overt
categorization accuracy, r " .05, p " .4.

Experiment 3

Experiments 2a and 2b confirmed that the results of Experiment
1 were consistent with auditory category learning and did not arise
from mere exposure to the stimuli or from learning individual
auditory-visual associations. Moreover, Experiment 2b highlighted
the importance of category exemplars that sample an orderly distri-
bution in perceptual space in supporting learning in the incidental
task. Whereas participants learned the auditory categories when six
acoustically variable exemplars sampled from a structured distribution
in perceptual space were associated with a visual target location
(Experiment 1), they did not learn when six exemplars randomly
sampled from the entire set of exemplars across the four auditory
categories were consistently associated with one of the visual target
locations (Experiment 2b). In Experiment 3, we explored this further
by examining the impact of category-consistent exemplar variability
across the five sounds preceding the visual target. As highlighted in
the introduction, the issue of variability in training is central in studies
of speech category learning. However, the influence of variability on
incidental auditory learning is unknown.

In Experiment 3, we examine how the learning we observe in
Experiment 1 is modulated by acoustic variability. We take a some-
what different approach compared with prior studies. Whereas inves-
tigations of the influence of category exemplar variability on auditory
category learning have contrasted learning across category exemplars
characterized by more or less variability, we hold variability constant
across Experiments 1 and 3. This relates to our hypothesis that
visuomotor associations support incidental learning.

The learning observed in Experiment 1, as compared with the
failure to learn in Experiment 2b, suggests that the visuomotor
associations from the primary visual detection task serve as a
strong signal to bind together the acoustically variable auditory
category exemplars. We hypothesize that experience that more
strongly ties acoustic variability to the teaching signal afforded by
the visuomotor associations will promote auditory category learn-
ing. To test this, we manipulate exemplar variability within a trial
while holding it constant (and equivalent to Experiment 1) across
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the experiment. Specifically, in Experiment 1 five repetitions of a
single exemplar drawn from a category preceded a visual target on
each trial. By contrast, in Experiment 3, five unique exemplars
drawn from the same category preceded a visual target’s appear-
ance in the category-consistent location. Across experiments, the
within-category variability experienced by participants was equiv-
alent. However, in Experiment 3 participants experienced within-
category variability within a single trial, tightly coupled with the
visuomotor associations we hypothesize to promote incidental
category learning, whereas in Experiment 1 participants experi-
enced the variability only across trials.

Method

Participants. Twenty-five participants with the same charac-
teristics as Experiment 1 were tested.

Stimuli. Stimuli were identical to those of Experiment 1.
Procedure. The experiment was conducted like Experiment 1,

except for one change. In Experiment 1, a single category exem-
plar was chosen and presented five times preceding the visual
target. In Experiment 3, there were also five sounds preceding the
visual target. However, instead of a single exemplar, five unique
exemplars were randomly selected (without replacement) from the
six category exemplars and presented in a random order. In this
way, participants experienced the same category input distribu-
tions experienced in Experiment 1. Across the course of the entire
experiment, participants’ experience with within- and between-
category acoustic variability was identical in Experiments 1 and 3.
However, participants in Experiment 3 experienced exemplar vari-
ability within a single trial, instead of across trials as in Experiment
1.

Results

SMART visual detection task (see Figure 3, bottom left
panel). Trials for which there was a visual detection error (M "
4.5%) or RT longer than 1,500 ms or shorter than 100 ms (M "
7.5%) were excluded from analyses. A repeated measures ANOVA
revealed a significant main effect of block (F(4, 96) " 25.61, p "
0.0001, #p

2 " .516). Most relevant to the hypotheses, there was a large
and significant RT Cost, t(24) " 7.78, p " .001, with participants
responding an average of 77 ms slower in Block 4 than Block 3. A
repeated measures ANOVA revealed no significant differences in RT
Cost for the two types of categories, F $ 1.

Overt categorization task (see Figure 4, second bar from
right). There was also strong evidence of category learning in
the overt posttraining categorization task. Participants labeled
novel generalization stimuli at above-chance levels, t(24) " 11.92,
p $ .0001 (M " 65.8%, SE " 3.42). This was true for both
uni-dimensional, t(24) " 11.56, p $ .0001 (M " 77.5%, SE "
4.5), and multidimensional, t(24) " 8.9, p $ .0001 (M " 54%,
SE " 3.26) categories.

Relationship between implicit and overt measures. There
was a significant positive relationship between participants’ overt
categorization task accuracy and the RT Cost elicited from dis-
rupting the category-location mapping in Block 4, r " .85, p $
.0001.

Comparison of category learning to Experiment 1 category
learning. Experiments 1 and 3 differed in whether participants
experienced within-category exemplar variability within a trial

(across the five sounds preceding a visual target, Experiment 3) or
across trials (five sounds preceding a visual target were identical,
Experiment 1). This factor influenced category learning consider-
ably, as observed in both category learning measures. The RT Cost
observed in Experiment 3 (M " 77 ms, SE " 9.97) was signifi-
cantly greater than that observed in Experiment 1 (M " 38 ms,
SE " 10.3), t(48) " 2.779, p " .008. In addition, participants in
Experiment 3 exhibited greater category learning as indicated by
accuracy in the overt labeling task (M " 65.75, SE " 3.42) than
participants in Experiment 1 (M " 49.73, SE " 3.89), t(48) "
3.09, p " .003. We also examined learning across the three first
blocks in Experiment 1 compared with Experiment 3. A repeated
measures ANOVA revealed a significant interaction between
block (Blocks 1–3) and experiment (Experiment 1 vs. Experiment
3), F(2, 96) " 4.19, p " .017. Further analysis revealed a signif-
icant linear trend in decreased RT across blocks for Experiment 3,
F(1, 48) " 23.16, p $ .001, but not for Experiment 1, F(1, 48) "
1.62, p " .207. Learning was more robust when within-category
exemplar variability was linked to the visuomotor associations that
support incidental auditory category learning.

Experiment 4

The difference in category learning outcomes between Experi-
ments 1 and 3 suggests that task demands encouraging a link from
within-category acoustic variability to a consistent signal (like one
of the visual locations in the SMART task) facilitate incidental
category learning. In Experiment 4, we sought to establish a
benchmark against which to compare the degree of this facilitation.
Experiment 4 was identical to Experiment 1 in nearly all respects
except that we doubled the number of blocks across which partic-
ipants experienced a consistent mapping between auditory cate-
gory and visual location.

Method

Participants. Twenty-five participants with the same charac-
teristics as Experiment 1 were tested.

Stimuli. Stimuli were identical to those of Experiment 1.
Procedure. The experiment was conducted like Experiment 1,

except that participants completed 10 blocks instead of 5 blocks in
the SMART task. Randomized blocks whereby the relationship
between auditory category and visual target location was destroyed
were presented at Block 4 and Block 9. This allowed us to compute
two RT Cost measures at two points across training.

Results.
SMART visual detection task (see Figure 3, middle bottom

panel). Trials for which there was a visual detection error (M "
4%) or RT longer than 1,500 ms or shorter than 100 ms (M " 3%)
were excluded from analyses. A repeated measures ANOVA re-
vealed a significant main effect of block, F(9, 216) " 5.07, p "
0.0001, #p

2 " 0.175. As shown in Figure 3, there was a significant
RT Cost, t(24) " 3.45, p $ .0001, with participants responding an
average of 36 ms slower in Block 4 than Block 3. There was also
a significant RT Cost, Cost t(24) " 3.47, p " .002, later in training
with participants averaging 31 ms slower visual detections in
Block 9 than Block 8. A repeated measures ANOVA revealed no
significant differences between the two types of categories in the
first RT Cost (Block 3 vs. Block 4), F(1, 24) " 1.38, p " .252, or
in the second RT Cost (Block 8 vs. Block 9), F $ 1.
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Overt categorization task. There was also evidence of cate-
gory learning in the overt posttraining categorization task. Partic-
ipants labeled novel generalization stimuli at above-chance levels,
t(24) " 5.94, p $ .0001, M " 54.8%, SE " 5.01. This was the case
for both uni-dimensional, t(24) " 5.22, p $ .0001, M " 56.82%,
SE " 6.1, and multidimensional, t(24) " 5.76, p $ .0001, M "
52.7%, SE " 4.81 categories.

Relationship between implicit and overt measures. There was
no significant relationship between participants’ overt categoriza-
tion task accuracy and the RT Cost elicited from disrupting the
category-location mapping in Block 4, r " .237, p " .127 or in
Block 9, r " .145, p " .245.

Comparison of category learning in Experiment 4 versus Ex-
periment 3. In doubling the training trials in the incidental
SMART task, Experiment 4 provided a benchmark against which
to compare the benefit of variability in Experiment 3. Category
learning as assessed via the implicit measure of RT Cost was
significantly greater in Experiment 3 than Experiment 4. Random-
izing the relationship between sound category exemplars and vi-
sual detection targets slowed Experiment 3 participants’ visual
detection significantly more (M " 77 ms, SE " 9.66) than Exper-
iment 4 participants, as measured at both the first (M " 35.63,
SE " 10.33, t(48) " 2.95, p " .005) and the second (M " 31.45,
SE " 9.07, t(48) " 3.46, p " .001) block of randomization in
Experiment 4. In the overt labeling task, there was no significant
difference, t(48) " 1.81, p " .076 across experiments. However,
the trend was for greater accuracy in overt labeling of generaliza-
tion exemplars after training with within-trial variability in Exper-
iment 3 (M " 65.75, SE " 3.42) compared with training with
double the training trials in Experiment 4 (M " 54.77, SE " 5.01).
In all, these comparisons underscore the advantageousness of
experiencing within-category exemplar variability in the context of
the visuomotor aspects of the primary task hypothesized to support
category learning. Indeed, it is notable that experiencing category
exemplar variability in this way resulted in as much, or better,
learning as doubling the training.

General Discussion

Categorization—the ability to treat distinct perceptual experi-
ences as equivalent—is central to cognition. Accordingly, a rich
tradition of research has addressed how humans categorize the
perceptual world. Most of what we know about perceptual cate-
gory learning comes from studies of participants who are actively
searching for diagnostic cues in the context of stimulus-response-
feedback tasks. However, much less is known about how catego-
ries are learned incidentally—that is, without instructions to search
for category-diagnostic dimensions, overt category decisions, or
experimenter-provided feedback. Although incidental learning has
not been a central focus of research, there is evidence that the
learning systems engaged by traditional tasks may be distinct from
those recruited by incidental category learning (Lim et al., 2013;
Tricomi et al., 2006). Because much of the learning we do about
categories in the natural auditory world is likely to be incidental
rather than driven by explicit, feedback-directed learning, it is
important to begin to understand how listeners incidentally acquire
perceptual categories.

In the present research, we examined factors driving incidental
category learning by studying how participants incidentally learn

nonspeech auditory categories. To this end, we developed a novel
experimental paradigm—the SMART task—in which participants
experienced auditory categories incidentally in the course of par-
ticipating in a visual detection task. Unbeknownst to participants,
auditory category membership predicted the upcoming location of
the visual detection target. As a result, the degree to which visual
target detection slowed when the tight coupling of auditory cate-
gory and visual target location was destroyed served as an implicit
assessment of sound category learning in the incidental training
task. After incidental training, we also assessed auditory category
learning using a more traditional overt labeling task to test the
generalization of incidental category learning across task and
novel sound exemplars.

We focused on two significant issues in incidental category
learning. The first was the influence of visuomotor associations in
binding acoustically variable exemplars together in incidental cat-
egory learning. We hypothesized that these associations would
support incidental auditory category learning. Specifically, we
expected that the consistent correlation of visual location and the
appropriate motor response to indicate the location of the visual
target would support auditory category learning as participants
performed the visual detection task. This approach treats co-
occurring stimulus and response dimensions as teaching signals for
learning.

Indeed, we find strong evidence for incidental category learning
across experiments. Experiment 1 established that participants
suffer a RT Cost to visual detection responses when the relation-
ship between auditory category and visual target location is de-
stroyed by random assignment in Block 4 of the SMART task.
Further, the magnitude of this RT Cost (in all but Experiment 4)
was positively correlated with participants’ accuracy in the overt
labeling task that followed: the greater the indication of incidental
category learning via the RT Cost, the greater participants’ cate-
gorization accuracy for novel sound exemplars in the subsequent
overt labeling task.

Experiments 2a and 2b corroborate the conclusion that Experi-
ment 1 resulted in incidental category learning via the visuomotor
coupling, and not via learning from mere exposure or simple
auditory-visual associations. When novel category-consistent au-
ditory exemplars were introduced in Block 4 of Experiment 2a,
participants experienced no RT Cost. The fact that visual detection
response times were unaffected suggests that participants were
already generalizing category learning to novel sound exemplars in
Block 4, consistent with categorization.

The learning also was not a result of simple association of
sounds to visual locations. When sounds were arbitrarily assigned
to visual location without respect to auditory category membership
yet consistently paired with the appearance of a visual target in a
particular location in Experiment 2b, participants failed to dem-
onstrate learning in either the incidental or overt tests. Thus, the
distributional structure and similarity of within-category exem-
plars appears to have participated in promoting incidental category
learning. This is consistent with the results of Wade and Holt
(2005), who found that participants who experienced categories
without distributional structure also failed to exhibit above-chance
labeling following videogame training.

In contrast to Experiments 2a and 2b, the results of Experiments
1, 3, and 4 showed incidental auditory category learning and robust
generalization of this category learning to both novel stimuli and
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also to an overt labeling task. Participants’ attention was not
directed to the sounds, they were not informed that the sounds
formed categories, they did not actively search for category-
diagnostic dimensions and make decisions based on them, and they
did not receive overt feedback about category decisions. We find
consistent evidence that a pairing of visual detection task elements
with the auditory categories can serve as the “representational
glue” that binds together acoustically distinct sound exemplars in
incidental training, so long as those exemplars have an underlying
distributional structure. It will be of interest to further probe the
boundaries and constraints on the kinds of distributional structure
that are readily learnable in incidental auditory category learning
in future research.

The second central issue of the present work was the role of
stimulus variability in learning. Prior research in speech category
learning has emphasized the importance of trained sound variabil-
ity in promoting category acquisition (e.g., Bradlow et al., 1997;
Iverson et al., 2005; Jamieson & Morosan, 1989; Lively, Logan, &
Pisoni, 1993; Wang et al., 1999). Although several studies have
examined incidental learning in the auditory domain (Seitz et al.,
2010; Vlahou et al., 2012; Wade & Holt, 2005), the issue of how
variability impacts incidental category learning has not been ex-
plored. Drawing off of the hypothesis that consistent pairing of the
visual detection task elements with the auditory categories could
serve to bind together acoustically variable within-category exem-
plars, we took an approach somewhat different from previous
studies. With learning in Experiment 1 as a baseline, Experiment
3 was constructed to have equivalent category exemplar variability
across the experiment. However, whereas within-category vari-
ability was experienced across trials (and therefore across visuo-
motor associations) in Experiment 1, it was experienced within
trials in Experiment 3. Therefore, the coupling of within-category
acoustic variability with the binding signals from the primary
visual detection task was more robust in Experiment 3. We pre-
dicted that learning would be facilitated by within-trial exemplar
variability, with stronger learning in Experiment 3 than Experi-
ment 1, even though overall variability was held constant across
experiments.

Indeed, our nontraditional manipulation of category variability
had a strong effect. The RT Cost observed in the Experiment 3
SMART task was nearly double that observed in Experiment 1;
destruction of the relationship between the sound categories and
visual locations had a much more damaging effect on participants’
visual detection response speed in Experiment 3 than Experiment
1. This suggests that participants in Experiment 3 were more
strongly reliant upon the auditory categories to guide visual de-
tection. The larger reduction in RTs across the first three blocks in
Experiment 3 compared with Experiment 1 is another indication
for better learning for within-trial variability. The results of the
overt labeling task suggest that this reliance was because of more
robust category learning. Participants in Experiment 3 exhibited
significantly greater accuracy in generalization to novel sound
category exemplars in the overt labeling task, compared with
Experiment 1 participants. In all, these results demonstrate that
variability impacts incidental category learning. It seems that peo-
ple learn more quickly when within-category exemplar variability
is experienced within each trial. Studies of supervised learning
suggest that training interleaved across categories may promote
learning compared with blocked training (Shea & Morgan, 1979).

However, under unsupervised learning conditions the advantage of
interleaved over blocked training depends on category similarity
(Clapper, 2014). The present data extends this research further by
demonstrating the advantage of within-trial variability over vari-
ability across trials for promoting incidental auditory category
learning.

More than this, these results move forward our thinking about
the impact of variability in training. The issue here is not one of
experiencing more versus less variability in training; variability
was equated across Experiments 1 and 3. Rather, the significant
factor appears to be how variability relates to the associations
supporting learning. By this view, variability that is experienced in
a manner that is more tightly coupled to the binding signals that
drive learning is expected to promote category learning. We would
predict this to be true of learning via feedback in more traditional
tasks as well (i.e., when explicit feedback is the binding signal).
This remains a question open for future research.

The careful reader may have noted that we have been attentive
to describing the present learning and that observed by Wade and
Holt (2005) as incidental. We do so to emphasize that the sound
categories are learned by virtue of their relationship to success in
performing a task defined along other dimensions. Although par-
ticipants are not overtly searching for dimensions diagnostic to
category membership and do not receive overt feedback about
categorization performance, it is important to highlight that this
learning is neither passive, nor entirely unsupervised or feedback-
free. Specifically, in the case of the SMART task, supportive cues
(the visual referent and associated motor response) linked to the
overt task were correlated with auditory category membership.
This buttressed learning beyond what has been observed for these
same stimuli under passive, unsupervised learning conditions (Em-
berson et al., 2013; Wade & Holt, 2005). Nevertheless, there is
evidence that quite complex perceptual categories can be acquired
through unsupervised learning (for examples in the visual domain
see Clapper, 2012; Love, 2002). It will be important to unravel the
relative influence of stimulus input distributions, categorization
training task, the influence of an active task, and the presence of
different types of feedback in future work. This is especially
important in light of the fact the incidental approach to category
learning described here (and in Wade & Holt, 2005) differs from
both passive exposure paradigms and learning via explicit
experimenter-provided feedback, the two approaches that have
been most influential in understanding auditory category learning
relevant to speech categorization.

In the domain of speech, learning via passive exposure has been
an influential theoretical perspective (Redington, Chater, & Finch,
1998; Saffran, 2001). By this view, the emphasis is on category
learning via passive accumulation of distributional regularities
(Maye, Werker, & Gerken, 2002; Saffran, Aslin, & Newport,
1996). The present results are in accord with this perspective with
respect to the significance of distributional regularities in the input
in supporting category learning. Experiment 2b, in particular,
emphasizes that the distributional structure of exemplars in input
has an important influence on the learnability of perceptual cate-
gories. However, the present results bring up an important point
for consideration with respect to passive, statistical learning ac-
counts of auditory (and phonetic) category acquisition. Experi-
ments 2a and 2b demonstrate that exposure alone was not suffi-
cient to elicit category learning. In fact, prior research using these
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same auditory categories supports the conclusion that passive
exposure is not always sufficient for category acquisition. The
sounds used here are not acquired in unsupervised sorting tasks
with no feedback (Wade & Holt, 2005) or across passive exposure
to streams of category exemplars in statistical segmentation tasks
like those pioneered by Saffran et al. (1996) (Emberson et al.,
2013).

Some have voiced concerns about the extent to which passive,
distributional statistical learning could scale up to learning cate-
gories in more cluttered natural environments, where there is an
explosion of potentially relevant distributional regularities, only
some of which are significant (Pierrehumbert, 2003). The present
results suggest that understanding incidental category learning
may require broader consideration of the regularities available to
learners in natural environments. In the present task, categories
that fail to be acquired with passive exposure are learned quite
quickly and incidentally in the context of correlations with the
visuomotor demands of the primary visual detection task. The
present paradigm is simplistic compared with the supportive mul-
timodal correlations potentially available in the natural perceptual
world. However, the results suggest that the presence of co-
occurring visual referents may support category learning in the
context of auditory category learning in complex environments by
signaling the distinctiveness of acoustically similar items across
references or the similarity of acoustically distinct exemplars
paired with the same referent.

Though the visual “referent” is a very simple difference in
visual target location, it seems to have served to signal a common
relationship among category exemplars. A recent study using the
videogame paradigm of Wade and Holt (2005) provides support
for this possibility (Lim, Lacerda, & Holt, in press). Participants
played the videogame with sound categories linked to the appear-
ance of specific alien creatures. However, instead of encountering
isolated category exemplars upon the appearance of an alien,
participants heard acoustically variable category exemplars em-
bedded in highly variable continuous sound streams. Although
variable, the category exemplars were the best predictors of spe-
cific aliens and the appropriate game action in the sea of highly
variable, continuous sound. Participants learned the categories and
generalized learning to novel exemplars without knowledge that
there were significant units embedded in the continuous sound,
information about the category exemplars’ temporal extent, or
awareness of the temporal position of the exemplars within the
stream. By contrast, naïve participants failed in unsupervised sort-
ing of these same continuous sounds into categories after passive
exposure. Lim et al. hypothesize that the consistent appearance of
a unique alien creature, a visual referent, supported learners in
acquiring the auditory categories in this complex environment.
What this suggests is that objects and events in the world consis-
tently paired with, or predictive of, categories can support category
acquisition in complex environments. Because there was no tem-
poral synchronization of the visual referent with the acoustically
variable category exemplars embedded in highly variable contin-
uous sound streams, Lim et al. suggest that the alien may provide
a visual referent akin to that provided by the coincidence of words
and objects in the world. Imagine being a non-English listener
hearing “I found my keys! The keys were under my book all along.
I thought I had lost the keys for good!” from a talker holding a set
of keys. There is high acoustic variability throughout the utterance,

including across the individual instances of keys. Nevertheless, the
visual referent may serve as a correlated signal that supports
discovery of the commonalities across the acoustically variable
instances of keys peppering the continuous acoustic stream. The
Lim et al. data present the possibility that visual referents may
support auditory category learning by signaling the distinctiveness
of acoustically similar items across referents and/or the similarity
of acoustically distinct items paired with the same referent even for
highly variable, continuous sensory input that mimics the com-
plexity of real world learning situations. Incidental learning con-
ditions whereby supportive multimodality information correlates
with category membership may boost learning above and beyond
passive exposure. This perspective is in line with theories positing
that in the natural environment infant word learners cut through
noisy co-occurrence statistics between words and referents by
relying on the convergence of multiple, statistically sensitive pro-
cesses (see Smith, Suanda, & Yu, 2014). Challenging learning
domains, like the categories of the present studies that are not
learned under passive exposure conditions, may be supported by
seemingly task-irrelevant “noise” that nonetheless possesses reg-
ularity.

This is an important theoretical issue for speech categorization,
where it is clear that learning in the natural environment does not
arise from explicit feedback of the sort typical of laboratory training
tasks. The present results caution that it need not be necessary to posit
entirely passive “statistical” distributional learning to accommodate
this fact. Statistical input distributions do matter for learning. Never-
theless, although the visuomotor task characteristics in the SMART
task are very simple, they support incidental category learning beyond
what could be evoked by passive exposure to the sounds. The natural
learning environment could be expected to provide even richer sup-
portive regularities and opportunities for learning.

This brings up another theoretical issue of relevance to the
present results. Although participants do not engage in explicit
categorization and there is no feedback in the traditional sense of
the experimenter providing “correct” versus “incorrect” feedback,
it would be an error to suggest that there is no feedback in incidental
tasks like SMART, or the Wade and Holt (2005) videogame. In the
videogame, feedback quite clearly arrives in the success or failure of
shooting actions. To the extent that sound categories predict appro-
priate actions, the outcomes of behavior provide an internal feedback
signal that may be influential in driving category learning. In a recent
review, Lim, Fiez, and Holt (2014) make the case that such learning
signals may be powerful in hastening the system’s sensitivity to
distributional regularities that would be more slowly acquired through
the Hebbian learning principles associated with learning through
passive exposure. Indeed, in a recent neuroimaging study of partici-
pants as they played the Wade and Holt (2005) videogame, Lim et al.
(2013) find evidence for posterior striatal involvement in incidental
category learning consistent with this possibility.

Considering this in the context of the present paradigm, it is
important to note that participants were nearly uniformly success-
ful in the simple visual detection task. Nonetheless, there was a
relationship between sound category and location such that suc-
cessful sound categorization could facilitate successfully detecting
and quickly responding to the visual target. Therefore, predictions
about target location made based on sound category are followed
by “feedback” about the accuracy of the prediction via the actual
appearance of the visual object at a specific location. The present
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studies do not differentiate the extent to which prediction and
auditory-visual association drive category learning, but the SMART
paradigm is amenable for discovering this in future research.

This aspect of the task bears some resemblance to the task-
irrelevant perceptual learning tasks that produce incidental audi-
tory learning, as reviewed previously in the article. In the task-
irrelevant perceptual learning paradigm, learning may take place
for stimulus features, whether or not they are relevant to the task,
so long as they are systematically paired with successfully pro-
cessed task targets, or rewards, within a critical time window
(Seitz, Nanez, Holloway, Koyama, & Watanabe, 2005; Seitz,
Nanez, Holloway, Tsushima, & Watanabe, 2006; Seitz & Wa-
tanabe, 2009; Watanabe, Náñez, & Sasaki, 2001). Applying this
approach in the auditory domain, Seitz et al. (2010) demonstrated
that when nonspeech sounds modeling aspects of speech formant
transitions were paired with targets in an unrelated behavioral task,
the discrimination thresholds for detecting whether the formant
transition changed in frequency across time decreased. Neither
attention nor even awareness of the subthreshold sounds was
necessary to evoke this learning. These studies provide evidence of
auditory learning from training that is neither passive, nor requir-
ing overt attention nor response to the learned stimulus dimen-
sions. Of interest, these results also suggest that explicit feedback
can sometimes be counterproductive to learning (Vlahou et al.,
2012). However, as noted, this incidental learning is not necessar-
ily category learning.

Nonetheless, the task-irrelevant learning paradigm task bears
some resemblance to the SMART task in that participants’ atten-
tion is directed away from the learning domain (auditory catego-
ries in the present case) and toward another task (here, visual
detection). Moreover, learning appears to be closely related to the
coordinated timing of task-relevant events and stimuli in the to-
be-learned domain. Seitz and Watanabe (2009) argue that task-
irrelevant perceptual learning occurs because of diffuse reinforce-
ment signals driven by the primary task and signals driven by the
presentation of the task-irrelevant stimuli. To the extent that task-
relevant and task-irrelevant stimulus features temporally coincide,
then task-irrelevant learning occurs. Both task-irrelevant percep-
tual learning and the incidental category learning observed in the
present studies challenge the prevailing notion that directed atten-
tion to the to-be-learned input is a prerequisite for learning.

An interesting aspect of the present data is the generalization of
incidental learning to the overt labeling task and to novel category
exemplars. Although participants acquired the artificial auditory
categories incidentally, they appear to have been able to immedi-
ately apply this knowledge to a new task requiring conscious
decision making about novel sounds. Moreover, assessments of
learning in the incidental and overt tasks were well-correlated.
This is an important aspect of the learning we observe. In the
present experiments, the superficial relationship of visual location
was maintained across the incidental and overt tasks. Future re-
search will need to determine whether this is important. Nonethe-
less, the degree of across-task generalization we observe is nota-
ble. Many “gamified” tasks that attempt to train individuals
incidentally have been criticized for “training to the test” with
quite poor generalization of new representations to untrained tasks.
Ultimately, if approaches to incidental category learning are to
have real-world impact such as in training adults to better catego-
rize second language phonetic categories, then generalization of

learning to new tasks is essential. It will be informative for future
research to establish the extent to which incidental speech category
training, for example, generalizes to benefit other language-learning
tasks. On a practical level, the present incidental approach to training
auditory categories is simple, fast and effective. Moreover, the rela-
tionship of visuomotor task elements to auditory categories appears to
be the significant factor in driving learning and so the SMART task is
quite amenable to embedding in other, perhaps more engaging, pri-
mary tasks (as, e.g., the Wade & Holt, 2005 videogame). Our finding
that learning generalizes to overt labeling is a necessary first step in
this regard.

Incidental category learning draws upon different learning sys-
tems than traditional overt categorization training task (Lim et al.,
2013; Tricomi et al., 2006). In light of the fact that incidental
learning is likely to be typical of category acquisition in the natural
world, it is important to begin to understand its basis. To this end,
we introduced a novel paradigm for studying the learning mech-
anisms involved in incidental category learning. With it, we dis-
covered that many-to-one auditory-to-visuomotor correspondences
are powerful in supporting incidental auditory category learning.
These correspondences serve as a representational glue that binds
together acoustically distinct sound exemplars in incidental train-
ing, so long as the exemplars have an underlying distributional
structure. Moreover, incidental category learning is facilitated
when category exemplar variability is more tightly coupled to
these visuomotor correspondences than when the same exemplar
variability is experienced across trials. These results advance our
understanding of incidental auditory category learning and inform
the incidental learning mechanisms available to phonetic category
learning and category acquisition across modalities.

References

Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual
Review of Psychology, 56, 149–178. http://dx.doi.org/10.1146/annurev
.psych.56.091103.070217

Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus
feedback training in rule-based and information-integration category
learning. Memory & Cognition, 30, 666–677. http://dx.doi.org/10.3758/
BF03196423

Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y.
(1997). Training Japanese listeners to identify English /r/ and /l/: IV.
Some effects of perceptual learning on speech production. The Journal
of the Acoustical Society of America, 101, 2299–2310. http://dx.doi.org/
10.1121/1.418276

Chandrasekaran, B., Yi, H.-G., & Maddox, W. T. (2014). Dual-learning
systems during speech category learning. Psychonomic Bulletin & Re-
view, 21, 488–495. http://dx.doi.org/10.3758/s13423-013-0501-5

Clapper, J. P. (2012). The effects of prior knowledge on incidental category
learning. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 38, 1558–1577. http://dx.doi.org/10.1037/a0028457

Clapper, J. P. (2014). The impact of training sequence and between-
category similarity on unsupervised induction. The Quarterly Journal of
Experimental Psychology [Advance online publication], 1–21. http://dx
.doi.org/10.1080/17470218.2014.981553

Cohen, H., & Lefebvre, C. (2005). Handbook of categorization in cognitive
science. Amsterdam: Elsevier.

Doya, K. (1999). What are the computations of the cerebellum, the basal
ganglia and the cerebral cortex? Neural Networks, 12, 961–974. http://
dx.doi.org/10.1016/S0893-6080(99)00046-5

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13INCIDENTAL AUDITORY CATEGORY LEARNING



Emberson, L. L., Liu, R., & Zevin, J. D. (2013). Is statistical learning
constrained by lower level perceptual organization? Cognition, 128,
82–102. http://dx.doi.org/10.1016/j.cognition.2012.12.006

Escudero, P. (2001). The role of the input in the development of L1 and L2
sound contrasts: Language-specific cue weighting for vowels. Paper
presented at the Proceedings of the 25th annual Boston University
conference on language development, Boston, MA.

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic
characteristics of American English vowels. The Journal of the Acous-
tical Society of America, 97, 3099–3111. http://dx.doi.org/10.1121/1
.411872

Holt, L. L., & Lotto, A. J. (2010). Speech perception as categorization.
Attention, Perception, & Psychophysics, 72, 1218–1227. http://dx.doi
.org/10.3758/APP.72.5.1218

Ingvalson, E. M., Holt, L. L., & McClelland, J. L. (2012). Can native
Japanese listeners learn to differentiate/r-l/on the basis of F3 onset
frequency? Bilingualism: Language and Cognition, 15, 434–435. http://
dx.doi.org/10.1017/S1366728912000041

Ingvalson, E. M., McClelland, J. L., & Holt, L. L. (2011). Predicting native
English-like performance by native Japanese speakers. Journal of Pho-
netics, 39, 571–584. http://dx.doi.org/10.1016/j.wocn.2011.03.003

Iverson, P., Hazan, V., & Bannister, K. (2005). Phonetic training with
acoustic cue manipulations: A comparison of methods for teaching
English /r/-/l/ to Japanese adults. The Journal of the Acoustical Society
of America, 118, 3267–3278. http://dx.doi.org/10.1121/1.2062307

Jamieson, D. G., & Morosan, D. E. (1989). Training new, nonnative speech
contrasts: A comparison of the prototype and perceptual fading tech-
niques. Canadian Journal of Psychology, 43, 88.

Leech, R., Holt, L. L., Devlin, J. T., & Dick, F. (2009). Expertise with
artificial nonspeech sounds recruits speech-sensitive cortical regions.
The Journal of Neuroscience, 29, 5234–5239. http://dx.doi.org/10.1523/
JNEUROSCI.5758-08.2009

Lim, S.-J., Fiez, J. A., & Holt, L. L. (2014). How may the basal ganglia
contribute to auditory categorization and speech perception? Frontiers in
Neuroscience, 8, 230.http://dx.doi.org/10.3389/fnins.2014.00230

Lim, S.-J., Fiez, J. A., Wheeler, M. E., & Holt, L. L. (2013). Investigating
the neural basis of video-game-based category learning. Paper presented
at the Cognitive Neuroscience Society, San Francisco, CA.

Lim, S.-J., & Holt, L. L. (2011). Learning foreign sounds in an alien world:
Videogame training improves non-native speech categorization. Cogni-
tive Science, 35, 1390 –1405. http://dx.doi.org/10.1111/j.1551-6709
.2011.01192.x

Lim, S.-J., Lacerda, F., & Holt, L. L. (in press). Discovering functional
units in continuous speech. Journal of Experimental Psychology: Human
Perception and Performance.

Lindblom, B. (1996). Role of articulation in speech perception: Clues from
production. The Journal of the Acoustical Society of America, 99,
1683–1692. http://dx.doi.org/10.1121/1.414691

Lindblom, B., Brownlee, S., Davis, B., & Moon, S.-J. (1992). Speech
transforms. Speech Communication, 11, 357–368. http://dx.doi.org/
10.1016/0167-6393(92)90041-5

Lisker, L. (1986). “Voicing” in English: A catalogue of acoustic features
signaling /b/ versus /p/ in trochees. Language and Speech, 29, 3–11.

Liu, R., & Holt, L. L. (2011). Neural changes associated with nonspeech
auditory category learning parallel those of speech category acquisition.
Journal of Cognitive Neuroscience, 23, 683–698. http://dx.doi.org/
10.1162/jocn.2009.21392

Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese
listeners to identify English /r/ and /l/. II: The role of phonetic environ-
ment and talker variability in learning new perceptual categories. The
Journal of the Acoustical Society of America, 94 (Pt 1), 1242–1255.
http://dx.doi.org/10.1121/1.408177

Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T.
(1994). Training Japanese listeners to identify English /r/ and /l/. III.

Long-term retention of new phonetic categories. The Journal of the
Acoustical Society of America, 96, 2076 –2087. http://dx.doi.org/
10.1121/1.410149

Love, B. C. (2002). Comparing supervised and unsupervised category
learning. Psychonomic Bulletin & Review, 9, 829–835. http://dx.doi.org/
10.3758/BF03196342

Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004).
Disrupting feedback processing interferes with rule-based but not
information-integration category learning. Memory & Cognition, 32,
582–591. http://dx.doi.org/10.3758/BF03195849

Maddox, W. T., Filoteo, J. V., Lauritzen, J. S., Connally, E., & Hejl, K. D.
(2005). Discontinuous categories affect information-integration but not
rule-based category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31, 654–669.

Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the
procedural-learning system but not the hypothesis-testing system in
perceptual category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31, 100 –107. http://dx.doi.org/
10.1037/0278-7393.31.1.100

Maddox, W. T., Ing, A. D., & Lauritzen, J. S. (2006). Stimulus modality
interacts with category structure in perceptual category learning. Per-
ception & Psychophysics, 68, 1176–1190. http://dx.doi.org/10.3758/
BF03193719

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distri-
butional information can affect phonetic discrimination. Cognition, 82,
B101–B111. http://dx.doi.org/10.1016/S0010-0277(01)00157-3

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning:
Evidence from performance measures. Cognitive Psychology, 19, 1–32.
http://dx.doi.org/10.1016/0010-0285(87)90002-8

Pierrehumbert, J. B. (2003). Phonetic diversity, statistical learning, and
acquisition of phonology. Language and Speech, 46 (Pt 2–3), 115–154.
http://dx.doi.org/10.1177/00238309030460020501

Redington, M., Chater, N., & Finch, S. (1998). Distributional information:
A powerful cue for acquiring syntactic categories. Cognitive Science, 22,
425–469. http://dx.doi.org/10.1207/s15516709cog2204_2

Saffran, J. R. (2001). The use of predictive dependencies in language
learning. Journal of Memory and Language, 44, 493–515. http://dx.doi
.org/10.1006/jmla.2000.2759

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by
8-month-old infants. Science, 274, 1926–1928.

Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual
Review of Neuroscience, 33, 203–219. http://dx.doi.org/10.1146/annurev
.neuro.051508.135546

Seitz, A. R., Nanez, J. E., Holloway, S. R., Koyama, S., & Watanabe, T.
(2005). Seeing what is not there shows the costs of perceptual learning.
Proceedings of the National Academy of Sciences of the United States of
America, 102, 9080–9085. http://dx.doi.org/10.1073/pnas.0501026102

Seitz, A. R., Nanez, J. E., Sr., Holloway, S., Tsushima, Y., & Watanabe, T.
(2006). Two cases requiring external reinforcement in perceptual learn-
ing. Journal of Vision, 6, 966–973. http://dx.doi.org/10.1167/6.9.9

Seitz, A. R., Protopapas, A., Tsushima, Y., Vlahou, E. L., Gori, S.,
Grossberg, S., & Watanabe, T. (2010). Unattended exposure to compo-
nents of speech sounds yields same benefits as explicit auditory training.
Cognition, 115, 435–443. http://dx.doi.org/10.1016/j.cognition.2010.03
.004

Seitz, A. R., & Watanabe, T. (2009). The phenomenon of task-irrelevant
perceptual learning. Vision Research, 49, 2604–2610. http://dx.doi.org/
10.1016/j.visres.2009.08.003

Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the
acquisition, retention, and transfer of a motor skill. Journal of Experi-
mental Psychology: Human Learning and Memory, 5, 179–187. http://
dx.doi.org/10.1037/0278-7393.5.2.179

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

14 GABAY, DICK, ZEVIN, AND HOLT



Smith, L. B., Suanda, S. H., & Yu, C. (2014). The unrealized promise of
infant statistical word-referent learning. Trends in Cognitive Sciences,
18, 251–258. http://dx.doi.org/10.1016/j.tics.2014.02.007

Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez,
J. A. (2006). Performance feedback drives caudate activation in a pho-
nological learning task. Journal of Cognitive Neuroscience, 18, 1029–
1043. http://dx.doi.org/10.1162/jocn.2006.18.6.1029

Vlahou, E. L., Protopapas, A., & Seitz, A. R. (2012). Implicit training of
nonnative speech stimuli. Journal of Experimental Psychology: General,
141, 363–381. http://dx.doi.org/10.1037/a0025014

Wade, T., & Holt, L. L. (2005). Incidental categorization of spectrally
complex non-invariant auditory stimuli in a computer game task. The
Journal of the Acoustical Society of America, 118, 2618–2633. http://
dx.doi.org/10.1121/1.2011156

Wang, Y., Spence, M. M., Jongman, A., & Sereno, J. A. (1999). Training
American listeners to perceive Mandarin tones. The Journal of the
Acoustical Society of America, 106, 3649 –3658. http://dx.doi.org/
10.1121/1.428217

Watanabe, T., Náñez, J. E., & Sasaki, Y. (2001). Perceptual learning
without perception. Nature, 413, 844–848. http://dx.doi.org/10.1038/
35101601

Received February 5, 2015
Revision received April 8, 2015

Accepted April 9, 2015 !

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

15INCIDENTAL AUDITORY CATEGORY LEARNING


